Update on Progress of SSIKLOPS (Space Station Integrated Kinetic Launcher for Orbital Payload Systems) - Cyclops

SpinSat

Cyclops

AIAA Small Satellite Conference

Authors: D. Newswander (NASA JSC), J. Smith Ph.D. (NASA JSC), C. Lamb (DoD STP), P. Ballard Ph.D. (DoD STP)

Presenter: D. Newswander (NASA JSC)

	Slide
VISION	
Capability	4
CYCLOPS	5
Satellite Interface	6-8
Concept of Operations	9-10
CREATION	
Designed/Analyzed	12-13
Fabricated	14
Tested/Certified	15-16
Integrated	17
UTILIZATION	
Launch	19
SpinSat Deployment	20-21
LoneStar Deployment	22-23
Future Utilizers	24
AUTHORS	25
ACKNOWLEDGEMENTS	26

VISION

CAPABILITY

- Access to space for satellites in the 50-100kg class is a challenge for the small satellite community.
- Rideshare opportunities are limited and costly, and the satellite must adhere to the primary payload's schedule / launch needs.
- Launching as an auxiliary payload on an Expendable Launch Vehicle presents many technical, envir., and logistical challenges.
- Cyclops provides small satellites the infrastructure to be deployed from the ISS into orbit with minimal technical, envir., logistical, and cost challenges.

CYCLOPS

- Cyclops interfaces with the JEM Airlock Slide Table, the ISS Robotic Arms, and the deployable satellites.
- Will deploy satellites up to 100 kg in size contingent upon satellites meeting all ISS safety requirements.

SATELLITE INTERFACE (1/3)

- The interface between Cyclops and its deployable satellite is called the Experiment Attachment Fixture (EAF).
- The EAF attaches to the bottom of the satellite and interfaces with the Cyclops' grapple system.

SpinSat with EAF and Cyclops

SATELLITE INTERFACE (2/3)

SpinSat in Cyclops Envelope

SATELLITE INTERFACE (3/3)

LoneStar in Cyclops Envelope

CONCEPT OF OPERATIONS (1/2)

- Cyclops and its deployable satellites will be launched onboard one of NASA's ISS resupply vehicles in a controlled pressurized, soft stowed environment.
- Cyclops and its deployable satellites will be stowed onboard the ISS.
- Cyclops with its deployable satellite will be processed through the ISS JEM Airlock and transferred to the deploy position by one of the ISS robotic arms.
- Cyclops will deploy its deployable satellite with assistance from one of the ISS robotic arms.
- Cyclops will be returned inside the ISS for future use.

CONCEPT OF OPERATIONS (2/2)

8/6/2014

AIAA Small Sat Conf - Cyclops Update

CREATION

DESIGNED/ANALYZED (1/2)

DESIGNED/ANALYZED (2/2)

FABRICATED

TESTED/CERTIFIED (1/2)

TESTED/CERTIFIED (2/2)

INTEGRATED

UTILIZATION

LAUNCH

SpaceX 4 9/12/2014!

SPINSAT DEPLOYMENT (1/2)

• SpinSat (55.9 cm dia; 52kg): Naval Research Laboratory electronically-controlled Solid Propellant thruster, atmospheric neutral density experiment.

SPINSAT DEPLOYMENT (2/2)

Oct 2014!

LONESTAR DEPLOYMENT (1/2)

• LONESTAR-2 (64 cm x 64 cm, 31 cm; 50kg): joint NASA, Texas A&M Univ., and Univ. of Texas at Austin autonomous rendezvous and docking experiment.

LONESTAR DEPLOYMENT (2/2)

Jan 2015!

FUTURE UTILIZERS

ISS P.O.C.: Al Holt
NASA Johnson Space Center
2101 NASA Parkway, Houston, TX 77058; 281-244-8394
Al.holt-1@nasa.gov

AUTHORS

Daniel R. Newswander, James P. Smith Ph.D.

NASA Johnson Space Center

2101 NASA Parkway, Houston, TX 77058; 281-483-8868

daniel.r.newswander@nasa.gov

Craig R. Lamb, Perry G. Ballard Ph.D.

Department of Defense Space Test Program

2101 NASA Parkway, Houston, TX 77058; 281-483-3425

craig.r.lamb@nasa.gov

ACKNOWLEDGEMENTS

- Special Thanks to ...
 - -ISS Program
 - -DoD STP
 - -NASA JSC Engineering Directorate
 - -NASA JSC Structural Engineering Division
 - -Japan Aerospace Exploration Agency
 - -LONESTAR
 - -SpinSat